Abstract

Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb) promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10–50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

Highlights

  • Green fluorescent protein (GFP) of the jellyfish Aequorea victoria is an excellent fluorescent marker since it can be expressed in heterologous hosts without the need for cofactors or specific substrates

  • A promoterless copy of egfp was integrated into pAT28 and expression of EGFP in this vector is driven by the promoter region of cfb, the CAMP-factor gene of S. agalactiae (Fig. 1)

  • Since transformation by pAT vectors has already been described for the genera Bacillus [28] and Listeria [29], including a pAT vector derivative carrying GFP for use in Listeria [30], it may very well be possible that the range of potential bacterial hosts for this plasmid is much broader

Read more

Summary

Introduction

Green fluorescent protein (GFP) of the jellyfish Aequorea victoria is an excellent fluorescent marker since it can be expressed in heterologous hosts without the need for cofactors or specific substrates. It shines bright green if activated by blue or UV light [1][2]. EGFP (enhanced green fluorescent protein), is a GFP variant causing a greatly increased fluorescence intensity compared to the GFP wildtype protein [7]. The chromophore is activated at high oxygen conditions [12]. In alkaline as well as acidic conditions, the fluorescence intensity is noticeably reduced [13][14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.