Abstract
The present study was aimed at design of experiments (DoE)- and artificial intelligence-based culture medium optimization for high level extracellular production of a novel recombinant human interferon alpha 2b (huIFNα2b) in glycoengineered Pichia pastoris and its characterization. The artificial neural network-genetic algorithm model exhibited improved huIFNα2b production and better predictability compared to response surface methodology. The optimized medium exhibited a fivefold increase in huIFNα2b titre compared to the complex medium. A maximum titre of huIFNα2b (436mgl-1 ) was achieved using the optimized medium in the bioreactor. Real-time capacitance data from dielectric spectroscopy were utilized to model the growth kinetics with unstructured models. Biological characterization by antiproliferative assay proved that the purified recombinant huIFNα2b was biologically active, exhibiting growth inhibition on breast cancer cell line. Culture medium optimization resulted in enhanced production of huIFNα2b in glycoengineered P. pastoris at both shake flask and bioreactor level. The purified huIFNα2b was found to be N-glycosylated and biologically active. DoE-based medium optimization strategy significantly improved huIFNα2b production. The antiproliferative activity of huIFNα2b substantiates its potential scope for application in cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.