Abstract

A method is presented for expressing human thymidylate synthase (TS) to the extent of 25–30% of the protein inEscherichia coli.By this procedure, 200–400 mg of pure enzyme can be obtained from a 2-liter culture of cells. The key to the level of expression appears to be related to the conversion of purine bases in the third, fourth, and fifth codons of the TS cDNA to thymine, without altering the encoded protein product. Conversion of the penultimate proline to a leucine did not diminish expression, but while the isolated native enzyme contained only proline on its amino-terminal end, the mutated enzyme was found to contain methionine on its amino terminus. By contrast, the expression of the unmodified TS cDNA represented only about 0.1–0.2% of the total cellular protein. Unlike recombinant rat and human TSs, the respective enzymes purified to homogeneity from eukaryotic cells were blocked at the amino ends and possessed 2- to 4-fold lower specific activities. To determine at what level the impairment of expression occurred, anin vitrotranscription, translation system was employed and the results showed that while transcription was unaffected, the translation of native TS mRNA was reduced by at least 20-fold relative to modified TS mRNA using a rabbit reticulocyte translation system. Thus, it appears that at least for the TS gene, expression is greatly influenced by the GC content of the 5′ coding region of the gene in both prokaryote and eukaryote systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.