Abstract
We describe here a synthetic red-shifted variant of GFP that can be introduced into tobacco plastid genomes and is highly expressed in regenerated plants that appear normal and fertile. The variant contains the S65G and S72A mutations which shift the absorption maximum from the 395 nm of wild-type GFP closer to 488 nm, a wavelength emitted by a laser commonly used in confocal microscopy. In addition to enhanced fluorescence, the removal of significant absorption below 450 nm will potentially facilitate double-labelling experiments. The variant GFP encoded by the synthetic gene can be expressed at a high level, forming approximately 5% of total leaf protein.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.