Abstract

BackgroundMannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above.ResultsA β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters Km and Vmax values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min-1 mg-1, 58.34±1.75 mg mL-1 and 285.71±10.86 μmol min-1 mg-1, respectively. The kcat/Km values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM-1 s-1 and 41.47±1.58 s-1 mg-1 mL, respectively. It displayed high tolerance to mannose, with a Ki value of approximately 900 mM.ConclusionsThis work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes.

Highlights

  • Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel

  • Amino acid sequence of Tth Man5 β-mannosidase The Tth man5 gene isolated from the T. thermarum genome was 1,824 bp in length coding 608 amino acids and it was predicted as an endo-β-mannanase (Theth_0949) available at NCBI and CAZy sites (Lucas S etal, 2011)

  • The results of alignments revealed that Glu141, Glu237, Glu238, Glu292 and Glu591 were conserved amino acids among these GHF5 β-mannosidases

Read more

Summary

Introduction

Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Mannans are complex polysaccharides representing one of the major components of hemicellulose, consisting of four types: linear mannan, glucomannan, galactomannan, and galactoglucomanan [1] Each of these polysaccharides has a β-1,4-linked backbone units including mannose or a combination of glucose and mannose residues, with the presence of α-1,6-linked side-chain substitutions [2]. Based on amino acid similarity and multi-domains, β-mannosidases have been mainly classified into glycoside hydrolase family (GHF) 1, 2 and 5 (http://www.cazy.org/). These β-mannosidases from different GHFs possess considerable industrial applications in many fields, such as food, feed and pulp/paper industries [6]. Lack of β-mannosidase can lead to β-mannosidosis [7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call