Abstract

Human tryptophan hydroxylase has been expressed as a soluble and active form in Escherichia coli by fusion with an affinity tag, maltose-binding protein. The fusion protein has been purified to near homogeneity by affinity chromatography on crosslinked amylose resin. The purified fusion protein has a specific activity of 86 nmol of 5-hydroxytryptophan per min per mg of fusion protein. A series of truncation mutants have also been made to explore the domain organization of tryptophan hydroxylase. All deletion mutants were subject to affinity purification and kinetic characterization. While removal of the N-terminal 164 amino acids completely inactivates the enzyme, deletion of the first 91 residues results in a 7-fold reduction in specific activity. From the C terminus, deletion of 36, 55, or 112 amino acids abolishes the activity, whereas deletion of 19 residues decreases the specific activity by approximately 11-fold. These results are consistent with a model for tryptophan hydroxylase in which the enzyme consists of an N-terminal regulatory domain, a catalytic core, and a small C-terminal region of uncertain but important function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.