Abstract
The need for assertive video classification has been increasingly in demand. Especially for detecting endangering situations, it is crucial to have a quick response to avoid triggering more serious problems. During this work, we target video classification concerning falls. Our study focuses on the use of high-level descriptors able to correctly characterize the event. These descriptor results will serve as inputs to a multi-stream architecture of VGG-16 networks. Therefore, our proposal is based on the analysis of the best combination of high-level extracted features for the binary classification of videos. This approach was tested on three known datasets, and has proven to yield similar results as other more consuming methods found in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of electrical and computer engineering systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.