Abstract
Visual shape perception is central to many everyday tasks, from object recognition to grasping and handling tools.1,2,3,4,5,6,7,8,9,10 Yet how shape is encoded in the visual system remains poorly understood. Here, we probed shape representations using visual aftereffects-perceptual distortions that occur following extended exposure to a stimulus.11,12,13,14,15,16,17 Such effects are thought to be caused by adaptation in neural populations that encode both simple, low-level stimulus characteristics17,18,19,20 and more abstract, high-level object features.21,22,23 To tease these two contributions apart, we used machine-learning methods to synthesize novel shapes in a multidimensional shape space, derived from a large database of natural shapes.24 Stimuli were carefully selected such that low-level and high-level adaptation models made distinct predictions about the shapes that observers would perceive following adaptation. We found that adaptation along vector trajectories in the high-level shape space predicted shape aftereffects better than simple low-level processes. Our findings reveal the central role of high-level statistical features in the visual representation of shape. The findings also hint that human vision is attuned to the distribution of shapes experienced in the natural environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.