Abstract

We present ab initio calculations carried out in the framework of the G2 theory on the singlet and triplet potential energy surfaces corresponding to the gas-phase between CH+2 and PO. The global minimum of both potential energy surfaces is a cyclic singlet-state cation. Oxygen attachment of PO to CH+2 in a triplet configuration is accompanied by a P(SINGLEBOND)O bond fission, with the result that the corresponding global minimum is an ion-dipole complex between P+(3P) and formaldehyde. This is also consistent with the fact that our results predict the formation of formaldehyde to be highly exothermic, either as a neutral or as radical cation. Both charge-transfer processes yielding CH2(3B1) or CH2(1A1) are also exothermic. The formation of other carbon and oxygen containing species are endothermic. © 1996 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.