Abstract

High-latitude observations of fluorescent nitric oxide gamma bands were made before and during a strong magnetic storm with the Ogo 4 ultraviolet spectrometer. Brightness measurements of the (1-0) gamma band of nitric oxide indicate a slow buildup of NO during the disturbed period. The NO column density reaches a value as high as a factor of 8 greater than the midlatitude value and shows no correlation with the brightness of the instantaneous aurora. A time-dependent model calculation indicates that the ionization and dissociation of N2 by auroral electrons can increase the NO and N(4-S) densities. This increase is dependent on the intensity and duration of the auroral precipitation and on the branching ratio of N(2-D) production by dissociation of N2. A steady state is not reached for NO until 100,000 sec in an aurora characterized by an energy flux of 10 ergs per sq cm sec. Dissociation by the solar ultraviolet radiation competes with horizontal and vertical transport as a loss process for the nitric oxide produced by the aurora. A high NO(plus)/O2(plus) ratio is to be expected in the period following a strong auroral precipitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call