Abstract
Radio sounding experiments probing the inner solar wind by polarized pulses of pulsars PSR B0525+21 (J0528+22) and PSR B531+21 (J0534+22) were carried out in June 2005 and June 2007 on the large phased array of the Lebedev Physical Institute at 111 MHz in the period near the minimum of the solar-activity cycle. The lines of sight toward these pulsars were close to the Sun during the observation sessions. The arrival-time delays for pulses from PSR J0534+22 are used to derive the radial dependence of the mean density of the circumsolar plasma. Comparison with Stanford coronal magnetic-field data, STEREO SECCHI, and SOHO EIT synoptic maps shows that the results are related to the polar coronal holes. The ambient density radial distribution derived from the arrival-time delays for pulses from PSR J0534+22 is stronger than inverse-square law indicating that the acceleration of fast, high-latitude solar-wind outflows, continues to heliocentric distances of (5–10)R S, where R S is the solar radius. The mean plasma density near a solar-activity minimum in the investigated range of heliocentric distances is substantially lower than at the solar-activity maximum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.