Abstract
Cold ions with low (a few eV) thermal energies and also often low bulk drift energies, dominate the ion population in the Earth’s magnetosphere. These ions mainly originate from the ionosphere. Here we concentrate on cold ions in the high latitude polar regions, where magnetic field lines are open and connected to the magnetotail. Outflow from the ionosphere can modify the dynamics of the magnetosphere. In-situ observations of low energy ions are challenging. In the low-density polar regions the equivalent spacecraft potential is often large compared to cold ion energies and the ions cannot reach the spacecraft. Rather, a supersonic ion flow creates an enhanced wake. The local electric field associated with this wake can be used to detect the drifting cold ions, and this wake technique can be used for statistical studies. In this paper, we review some of the key results obtained from this technique. These results help us to understand how cold ionospheric outflow varies with various conditions of solar activities and the Earth’s intrinsic magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.