Abstract

A wide-bandwidth and low-noise amplification chain in the microwave regime is crucial for the efficient read-out of quantum systems based on superconducting detectors, such as Microwave Kinetic Inductance Detectors (MKIDs), Transition Edge Sensors (TESs), Magnetic Microcalorimeters (MMCs), and RF cavities, as well as qubits. Kinetic Inductance Travelling Wave Parametric Amplifiers (KI-TWPAs) operated in a three-wave mixing fashion have demonstrated exceptional dynamic range and low-noise performance, approaching the quantum limit. These amplifiers can be fabricated using a single layer of a high kinetic inductance film as weakly dispersive artificial transmission lines, with the ability to control the phase-matched bandwidth through dispersion engineering. In this study, we present the optimisation of the rf sputter-deposition process of NbTiN films using a Nb80%Ti20% target, with the goal of achieving precise control over film characteristics, resulting in high kinetic inductance while maintaining a high transition temperature. The parameter landscape related to the different sputtering conditions, such as pressure, power, and nitrogen flow, has been explored and the film thickness has been used as a fine-tuning parameter to adjust the properties of the final NbTiN films used for the fabrication of KI-TWPAs. As a final result, we have obtained a NbTiN film with a kinetic inductance of 8.5 pH/sq which we have exploited to fabricate KI-TWPA prototype devices, showing promising amplification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.