Abstract

Progress in the theoretical and experimental development of the plasma jet source and injection of hydrogen plasma and neutral gas jets into the Globus-M spherical tokamak is discussed. An experimental test bed is described for investigation of intense plasma jets that are generated by a double-stage plasma gun consisting of an intense source for neutral gas production and a conventional pulsed coaxial accelerator. A procedure for optimizing the accelerator parameters so as to achieve the maximum possible flow velocity with a limited discharge current and a reasonable length of the coaxial electrodes is presented. The calculations are compared with experiment. Plasma jet parameters, among them pressure distribution across the jet, flow velocity, plasma density, etc, were measured. Plasma jets with densities of up to 1022 m−3, total numbers of accelerated particles (1–5) × 1019, and flow velocities of 50–100 km s−1 were successfully injected into the plasma column of the Globus-M tokamak. Interferometric and Thomson scattering measurements confirmed deep jet penetration and a fast density rise (<0.5 ms) at all spatial points up to a radius r≈ 0.3a. The plasma particle inventory increase by ∼50% (from 0.65 × 1019 to 1 × 1019) did not result in plasma degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call