Abstract

We report results from an experiment on the decay of the high-K isomers in 254No. We have been able to establish the decay from the known high-lying four-quasiparticle isomer, which we assign as a Kπ=16+ state at an excitation energy of Ex=2.928(3) MeV. The decay of this state passes through a rotational band based on a previously unobserved state at Ex=2.012(2) MeV, which we suggest is based on a two-quasineutron configuration with Kπ=10+. This state in turn decays to a rotational band based on the known Kπ=8− isomer, which we infer must also have a two quasineutron configuration. We are able to assign many new gamma-rays associated with the decay of the Kπ=8− isomer, including the identification of a highly K-forbidden ΔK=8 E1 transition to the ground-state band. These results provide valuable new information on the orbitals close to the Fermi surface, pairing correlations, deformation and rotational response, and K-conservation in nuclei of the deformed trans-fermium region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.