Abstract

In nanocomposite gel polymer electrolytes (NCGPEs), high ionic conductivity is realized at a large electrolyte uptake ratio compromising the dimensional stability of the electrolyte films. The present work demonstrates interesting biodegradable gel polymer electrolytes based on guar gum (GG) dispersed with TiO2 nanofibers. Very high ionic conductivity of 2.3 × 10−3 Scm−1 at ambient temperature has been achieved at a relatively low electrolyte uptake ratio of 92% when nanofiber content in guar gum is 2.5 wt% ascertaining the role of nanofibers in promoting ion transport in NCGPEs. Nanofibers also empower the NCGPEs with higher electrochemical and interfacial properties making them a suitable candidate for energy storage systems of the next generation. The enhanced properties of NCGPEs induced by nanofibers have been supported by XRD, FTIR, XPS and computational studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call