Abstract
Abstract. Ice-nucleating macromolecules (INMs) produced by plant pollen can nucleate ice at warm temperatures and may play an important role in weather- and climate-relevant cloud glaciation. INMs have also proved useful for mammalian cell and tissue model cryopreservation. The high ice nucleation (IN) activity of some INMs indicates an underlying biological function, either freezing tolerance or bioprecipitation-mediated dispersal. Here, using the largest study of pollen ice nucleation to date, we show that phylogenetic proximity, spermatophyte subdivision, primary growth biome, pollination season, primary pollination method, desiccation tolerance and native growth elevation do not account for the IN activity of INMs released from different plant species' pollen. The results suggest that these macromolecules are produced by plants for a purpose unrelated to ice nucleation and have an incidental ability to nucleate ice. This ability may have been adapted by some species for specific biological purposes, producing exceptional ice nucleators. Pollen INMs may be more active, widespread in nature, and diverse than previously thought.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.