Abstract

The paper briefly presents some main highlights of High Energy Density Physics (HEDP) achievements starting from its origin in the 1940s to the current time. A decisive role of high explosives (HE) is emphasized in studying high intensive processes and high energy density states of matter. Mechanisms of detonation and kinetics of energy release still remain acute in the HE studying. Research and scientific applications of nuclear explosions opened a new stage in HEDP development. They provided a million‐fold increase of energy density if compared to that of high explosives. High intensive heat waves and strong shock waves were studied and used to measure dense plasma opacities and matter properties under extreme conditions. This data remains important for the development of theoretical models of matter. Powerful pulsed facilities (lasers, electric explosion installations, and charged particle accelerators) were constructed to extend opportunities for the HEDP research. One of their main goals is to study inertial confinement fusion. HEDP technologies and results are very useful in space and astrophysical research, and on the contrary, astrophysical studies enrich HEDP with new models, problems and solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.