Abstract
Simple SummaryCertain exercise performances or movements cause sudden changes (or increases) in metabolic response. Track and field running events that require explosive energy in the shortest time, such as a 100-m sprint, need an immediate energy supply. Referring to the relevant studies to date, metabolic responses to submaximal exercise have been well documented, while information on the metabolic responses of short-term sprint performance is relatively insufficient. In this regard, based on the evidence that the human body relies on anaerobic energy metabolism during intense, short-term exercise, we investigated anaerobic energy contributions following the acute effect of a high-intensity warm-up during a 100 m-sprint. The main finding of our study revealed that a high-intensity warm-up (HIW) increases the contribution of the anaerobic system, probably by activating key regulatory enzymes related to anaerobic energy metabolism, compared to a low-intensity warm-up, for a 100-m sprint. Therefore, an HIW is effective in increasing anaerobic energy contribution during a 100-m sprint, which can be a useful strategy for coaches and athletes in the field.This study aimed to evaluate the effects of warm-up intensity on energetic contribution and performance during a 100-m sprint. Ten young male sprinters performed 100-m sprints following both a high-intensity warm-up (HIW) and a low-intensity warm-up (LIW). Both the HIW and LIW were included in common baseline warm-ups and interventional warm-ups (eight 60-m runs, HIW; 60 to 95%, LIW; 40% alone). Blood lactate concentration [La−], time trial, and oxygen uptake (VO2) were measured. The different energy system contribution was calculated by using physiological variables. [La−1]Max following HIW was significantly higher than in LIW (11.86 ± 2.52 vs. 9.24 ± 1.61 mmol·L−1; p < 0.01, respectively). The 100-m sprint time trial was not significantly different between HIW and LIW (11.83 ± 0.57 vs. 12.10 ± 0.63 s; p > 0.05, respectively). The relative (%) phosphagen system contribution was higher in the HIW compared to the LIW (70 vs. 61%; p < 0.01, respectively). These results indicate that an HIW increases phosphagen and glycolytic system contributions as compared to an LIW for the 100-m sprint. Furthermore, an HIW prior to short-term intense exercise has no effect on a 100-m sprint time trial; however, it tends to improve times (decreased 100-m time trial; −0.27 s in HIW vs. LIW).
Highlights
The question of how specific energy-providing pathways, induced by anaerobic metabolism, affect short-term intense exercise is a subject of growing interest to exercise physiologists [1]
The creatine kinase reaction is based heavily on the concentration of intramuscular stores of phosphocreatine (PCr), since, to provide adenosine triphosphate (ATP), only one metabolic reaction is required during the first few seconds [8,9]
Further performance-related parameters, such as intramuscular data, should be considered in future studies. These results indicate that an high-intensity warm-up (HIW) increases phosphagen and glycolytic system contributions, as compared to an low-intensity warm-up (LIW), for the 100-m sprint
Summary
The question of how specific energy-providing pathways, induced by anaerobic metabolism, affect short-term intense exercise is a subject of growing interest to exercise physiologists [1]. The 100-m sprint in outdoor track and field running events utilizes immediate energy production for synthesizing adenosine triphosphate (ATP), predominantly via the use of phosphagen and glycolytic systems [2]. According to a previous study, the percentage of the anaerobic system utilized for this purpose (i.e., phosphagen and glycolytic system) is approximately 90~95% for 100-m sprint running (~10 s) [3,4]. Phosphagen, as the fastest and most powerful substrate energy system, contributes predominantly to speed acceleration during the first three seconds (approximately) [5,6,7]. The creatine kinase reaction is based heavily on the concentration of intramuscular stores of phosphocreatine (PCr), since, to provide ATP, only one metabolic reaction is required during the first few seconds [8,9]. Hirvonen et al [7] reported that maximum sprint performance relies on the capacity of an athlete to catalyze high-energy phosphates, as elite sprinters (100-m) demonstrated a superior ability to breakdown PCr
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.