Abstract
Recent advances in novel technologies such as chirped pulse amplification and high gradient rf photoinjectors make it possible to study experimentally the interaction of relativistic electrons with ultrahigh intensity photon fields. Femtosecond laser systems operating in the TW–PW range are now available, as well as synchronized relativistic electron bunches with subpicosecond durations and THz bandwidths. Ponderomotive scattering can accelerate these electrons with extremely high gradients in a three-dimensional vacuum laser focus. The nonlinear Doppler shift induced by relativistic radiation pressure in Compton backscattering is shown to yield complex nonlinear spectra which can be modified by using temporal laser pulse shaping techniques. Colliding lasers pulses, where ponderomotive acceleration and Compton backscattering are combined, could also yield extremely short wavelength photons. Finally, strong radiative corrections are expected when the Doppler-upshifted laser wavelength approaches the Compton scale. These are discussed within the context of high field classical electrodynamics, a new discipline borne out of the aforementioned innovations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.