Abstract

It has been shown that high-intensity interval training (HIIT) leads to skeletal muscle hypertrophy; however, its mechanisms of cellular and molecular regulation are still unclear. The purpose of this study was to investigate the effect of HIIT on muscle hypertrophy and major signal transduction pathways. 12 male rats were randomly divided into two groups: control and HIIT. The exercise group performed 30-min HIIT in each session (5 × 4-min intervals running at 85-95% VO2max separated by 2-min active rest at 55-60% VO2max), 3 days/week for 8 weeks. Muscle fiber cross-sectional area (CSA) and the expression of signal transduction pathway proteins were determined in the gastrocnemius muscle. In the HIIT group, the expression of IGF-I, IGF-IR Akt, p-Akt, AMPKα, p-AMPKα and follistatin increased significantly, whereas a significant decrease was observed in the expression of FoxO1, p-FoxO1, myostatin, ActRIIB, Smad2/3 and p-Smad2/3 (P < 0.05). However, there were no significant differences between the HIIT and control groups in the expression of mTOR, p-mTOR, P70S6K, and p-P70S6K (P > 0.05). In addition, CSA and gastrocnemius muscle weight increased significantly in the HIIT group (P < 0.05). HIIT induced muscle hypertrophy by improving IGF-I/Akt/FoxO and myostatin/Smad signal transduction pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.