Abstract

Physical exercise or hypoxic exposure influences erythrocyte susceptibility to osmotic stress, and the aquaporin 1 (AQP1) facilitates the transport of water in erythrocytes. This study investigated whether high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) affect erythrocyte osmotic deformability by modulating AQP1 function under hypoxic stress. Forty-five healthy sedentary males were randomized to engage in either HIIT (3-min intervals at 40% and 80% V˙O2 reserve, n = 15) or MICT (sustained 60% V˙O2 reserve, n = 15) on a bicycle ergometer for 30 min·d, 5 d·wk for 6 wk, or to a control group that did not perform any exercise (n = 15). All subjects were analyzed with osmotic gradient ektacytometry for assessing erythrocyte membrane stability and osmotic deformability after hypoxic exercise (HE) (100 W under 12%O2 for 30 min). Before the intervention, HE increased the shear stress at 50% of maximal elongation (SS1/2) and the ratio of SS1/2 to maximal elongation index (SS1/2/EImax) on erythrocytes pretreated with 50 Pa of shear stress for 30 min and diminished HgCl2-depressed osmolality at 50%EImax (Ohyper). However, both HIIT and MICT for 6 wk diminished the elevations of erythrocyte SS1/2 and SS1/2/EImax caused by HE. Moreover, HIIT also increased contents of erythrocyte AQP1 proteins while enhancing HgCl2-depressed Ohyper and area under elongation index-osmolarity curve after HE. Additionally, changes in erythrocyte AQP1 contents were associated with changes in HgCl2-depressed erythrocyte Ohyper and area under elongation index-osmolarity curve. Acute HE reduces erythrocyte membrane stability, whereas either HIIT or MICT attenuates the depression of erythrocyte membrane stability by HE. Moreover, HIIT increases the AQP1 content and facilitates the HgCl2-mediated osmotic deformability of erythrocytes after HE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call