Abstract

The development of practices that enhance the potential of actinomycetes as major antibiotic producers is a challenge in discovering new secondary metabolites. Light, an essential external stimulus for most microorganisms, could be exploited to manipulate their physiological processes. However, the effects of monochromatic green light on the production of secondary metabolites in actinomycetes have not yet been reported. In this paper, we report a novel and simple method that uses high-intensity monochromatic green light to potentially induce the production of cryptic secondary metabolites in the model actinomycete Streptomyces coelicolor A3(2). Using actinorhodin (ACT), a blue-pigmented antibiotic, and undecylprodigiosin (RED), a red-pigmented antibiotic, as indicators, we found that irradiation with high-intensity monochromatic green light-emitting diodes promoted sporulation, significantly decreased RED production, and increased ACT production. Semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses revealed, for the first time, that stimulation with green light accelerated the expression of ActII-ORF4, a pathway-specific regulator of ACT biosynthesis in S. coelicolor A3(2). This approach of stimulating secondary metabolite biosynthesis pathways in actinomycetes by irradiation with high-intensity monochromatic green light is expected to facilitate the discovery of cryptic antibiotics that are not typically produced under conventional dark culture conditions. However, the effective intensity and duration of irradiation with green light that are required to activate these metabolite pathways may vary markedly among actinomycetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call