Abstract

Mild hyperthermia has been used in combination with polymer therapeutics to further increase delivery to solid tumors and enhance efficacy. An attractive method for generating heat is through non-invasive high intensity focused ultrasound (HIFU). HIFU is often used for ablative therapies and must be adapted to produce uniform mild hyperthermia in a solid tumor. In this work a magnetic resonance imaging guided HIFU (MRgHIFU) controlled feedback system was developed to produce a spatially uniform 43°C heating pattern in a subcutaneous mouse tumor. MRgHIFU was employed to create hyperthermic conditions that enhance macromolecular delivery. Using a mouse model with two subcutaneous tumors, it was demonstrated that MRgHIFU enhanced delivery of both Evans blue dye (EBD) and Gadolinium-chelated N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. The EBD accumulation in the heated tumors increased by nearly 2-fold compared to unheated tumors. The Gadolinium-chelated HPMA copolymers also showed significant enhancement in accumulation over control as evaluated through MRI T1-mapping measurements. Results show the potential of HIFU-mediated hyperthermia for enhanced delivery of polymer therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call