Abstract

High power ultrasound has been employed to catalyze chemical processes for many years. This is typically based on the ability of the system to produce cavitation, through which high temperatures and pressures are released enabling acceleration of chemical reactions. The ultrasonic system used in sonochemistry is traditionally based on a distributed configuration of single frequency transducers. However, these designs can result in complex reactor design and significant power supply demands. In this work, high intensity focused ultrasound (HIFU) is consider as an alternative transduction solution due to its steering and focusing capabilities. Importantly, the steering ability can manipulate the cavitating field within reactor vessel. Three low frequency, high power array transducers have been fabricated, with operating frequencies of 210 kHz, 290 kHz and 420 kHz and each device comprising 16 array elements. Preliminary characterization of these devices, including electrical impedance and surface displacement measurements, correlates well with the predicted performance through PZFlex. A comparison of the ability of each device to generate a cavitating field, at a number of focal positions, was conducted using a hydrophone and conventional aluminum foil experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.