Abstract

The association of insulin resistance and compensatory hyperinsulinaemia with increased coronary events in diabetic patients is poorly understood. There are few publications about the direct atherogenic actions of insulin on the endothelium compared with those on vascular smooth muscle cells. The aim of this study was to elucidate whether high insulin directly affects neutrophil-endothelial cell adhesion and surface expression of endothelial adhesion molecules. We also examined what intracellular mechanisms are involved in these events. Studies of adhesion between neutrophils from healthy volunteers and human umbilical vein endothelial cells incubated in insulin-rich medium were carried out. Adhered neutrophils were quantified by measuring their myeloperoxidase activities and surface expression of endothelial adhesion molecules was examined using an enzyme immunoassay. High insulin enhanced neutrophil-endothelial cell adhesion with an increase in the expression of intercellular adhesion molecule-1 but not E-selectin or P-selectin. Both phenomena were attenuated by pretreatment with protein kinase C inhibitors and a mitogen activated protein kinase inhibitor. These results suggest that hyperinsulinaemia causes vascular injury by directly exacerbating neutrophil-endothelial cell adhesion through increasing endothelial expression of intercellular adhesion molecule-1 via activation of protein kinase and mitogen activated protein kinase pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.