Abstract

Plant diseases prompted by fungi and bacteria are one of the most serious threats to global crop production and food security. The destruction of these infections posed a major challenge to plant protection by chemical control. Herein, we develop CMCS/PA/Zn2+ nanoparticles (NPs) using carboxymethyl chitosan (CMCS), phytic acid (PA) and metal ions (Zn2+) via flash nanoprecipitation (FNP) strategy. Metal complexes of PA with specified antibacterial and antifungal activities are expected to hold the potential and play a significant role in antimicrobial treatment. The size and size distribution of NPs was confirmed through Dynamic and Static Light Scatterer (DSLS). In acidic-infection microenvironment, the CMCS/PA/Zn2+ NPs can disintegrate and release Zn2+ in situ thus stimulated the corresponding antimicrobial activity. These CMCS/PA/Zn2+ NPs showed outstanding antibacterial efficacy (98 %) against S. aureus and E. coli bacteria in vitro, as well as an impressive antifungal efficacy of 98 % and 81 % against R. solani and B. cinerea at 50 μg/mL respectively. This study contributes a prospective idea to the development of organic-inorganic hybrid NPs as environmentally-friendly and safe agricultural antimicrobials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call