Abstract

The first instrumental setup, to our knowledge, that is capable of recording in a few hours the time-resolved Fourier transform (TRFT) interferograms of gas-phase spectra that cover several thousands of inverse centimeters with spectral- and time-resolution limits that are equal, at best, to 2.5 x 10(-3) cm(-1) and 2 ns, respectively, is reported. It was developed on the stepping-mode Connes-type interferometer of the Laboratoire de Photophysique Moléculaire Université de Paris Sud. Also, for the first time, to our knowledge, these high-resolution TRFT spectra, illustrated with the Doppler-limited emission spectra of the N(2) transitions (B-A) and (B'-B) between 5500 and 11 000 cm(-1) and of the atomic Ar lines between 1800 and 4000 cm(-1), are recorded in the infrared spectral range. To obtain identical results that have the same signal-to-noise ratio, we should have increased the recording time of our unique previous high-information TRFT spectra by approximately 50,000. In other words, one hour is now long enough to obtain what would previously have required six years to record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.