Abstract

The present paper presents a thorough experimental investigation of mechanistic pathways of thermal decomposition of ammonia borane (AB) and its mixture with KBr. A comparative detection and temperature-dependent in situ monitoring of the decomposition products was done by use of temperature-dependent infrared (IR) spectroscopy of both solid (in transmission through KBr pellets and ATR mode) and gaseous products, thermogravimetry (TG) and evolved gas analysis mass spectroscopy (EGA–MS). This enables discrimination of the processes occurring in the bulk from those in the near-surface level. For the first time, a high influence of the KBr matrix on AB decomposition was found and thoroughly investigated. Although KBr does not change the chemical and physical identity of AB at ambient conditions, it dramatically affects its thermal decomposition pathway. It is found that the presence of KBr not only favors the production of diammoniate of diborane in the induction phase, but also enables an efficient catalysi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.