Abstract

A new high impedance fault (HIF) detection method using time-frequency analysis for feature extraction is proposed. A pattern classifier is trained whose feature set consists of current waveform energy and normalized joint time-frequency moments. The proposed method shows high efficacy in all the detection criteria defined in this paper. The method is verified using the real-world data, acquired from HIF tests on three different materials (concrete, grass, and tree branch) and under two different conditions (wet, and dry). Several non-fault events, which often confuse HIF detection systems, were simulated, such as capacitor switching, transformer inrush current, non-linear loads, and power electronics sources. A new set of criteria for fault detection is proposed. Using these criteria the proposed method is evaluated and its performance is compared with the existing methods. These criteria are accuracy, dependability, security, safety, sensibility, cost, objectivity, completeness, and speed. The proposed method is compared with the existing methods, and it is shown to be more reliable, and efficient than its existing counterparts. The effect of choice of pattern classifier on method efficacy is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.