Abstract

High hydrostatic pressure (HHP) treatment has been used to alleviate the allergenicity of soybeans, but there are little data about the potential antigenicity of β-conglycinin after HHP treatment. We examined the effects of HHP treatment on the antigenicity and structure of β-conglycinin. When the pressure was 300 and 400 MPa, HHP treatment reduced the immunoglobulin (Ig)G binding capacity of β-conglycinin, while its IgE binding capacity did not change significantly. After in vitro digestion, both the IgE and IgG binding of β-conglycinin was obviously inhibited after HHP treatment at 400 MPa and 60 °C, although its binding capacity with linear epitope antibodies increased. Moreover, HHP treatment changed the secondary structure of β-conglycinin, the content of α-helix and random coils increased, while the β-sheet and β-turn decreased. After HHP treatment, the conformational structure was unfolded so that a large number of hydrophobic regions were exposed. HHP treatment alleviated the potential antigenicity of β-conglycinin by modifying its structure, which facilitated in vitro digestion and destroyed epitopes. This research provides a new insight into the mechanism of HHP treatment that affects the sensitization of soy protein allergens. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call