Abstract

We have previously demonstrated that high pressure processing (HPP) is effective in preventing in vitro replication of murine norovirus strain 1 (MNV-1), a human norovirus surrogate, in a monocyte cell line following extraction from MNV-1-contaminated oysters. In the present study, the efficacy of HPP to prevent in vivo replication within mice fed HPP-treated MNV-1-seeded oyster extracts was evaluated. Oyster homogenate extracts seeded with MNV-1 were given 5-min, 400-MPa (58,016-psi) treatments and orally gavaged into immunodeficient (STAT-1(-/-)) female mice. Mice orally gavaged with HPP-treated MNV-1 showed significant (P ≤ 0.05) weight loss leading to enhanced morbidity, whereas those given 100 and 200 PFU of HPP-treated MNV-1 were comparable to uninfected controls. MNV-1 was detected, via real-time PCR, within the liver, spleen, and brain of all mice fed non-HPP-treated homogenate but was not detected in the tissues of mice fed HPP-treated homogenates or in uninfected control mice. Hepatocellular necrosis and lymphoid depletion in the spleen were observed in non-HPP-treated MNV-1 mice only. These results clearly show that HPP prevents MNV-1 infection in vivo and validates that viral inactivation by HPP in vitro is essentially equivalent to that in vivo. Further, the data suggest that HPP may be an effective food processing intervention for norovirus-contaminated shellfish and thus may decrease risk to both immunocompromised and immunocompetent individuals who consume shellfish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call