Abstract

Abstract Whey proteins, due to their high nutritional value, are generally hydrolyzed to reduce the allergenicity and used as ingredients in many special products, such as infant formulae, geriatric products, highly energetic supplements or dietetic foods or in foods produced to prevent nutrition related diseases, like food intolerances and allergies. The aim of this work was to assess the applicability of innovative technologies, such as high hydrostatic pressure (HHP) processes, to assist the enzymatic hydrolysis of target proteins, namely whey protein concentrate (WPC-80), in order to modify their antigenicity. Experiments were carried out to verify the effectiveness of HHP technology to accelerate whey protein hydrolysis reaction with selected enzymes (α-chymotrypsin, bromelain), and to affect the protein allergenic power. To this purpose, different HHP treatments were carried out at several pressure levels (100, 200, 300 and 400 MPa) and the untreated whey protein samples were used as control. A defined enzyme/substrate ratio of 1/10 w/w was used in the experiments, while the treatment time was changed from 0 to 30 min (0, 5, 15, or 30 min). The experimental data demonstrated that High Hydrostatic Pressure (HHP) induced WPC-80 unfolding at the highest value of the pressure applied (400 MPa) as indicated by the higher exposure of free sulfhydryl groups. When HHP was used in combination with enzymatic hydrolysis, the degree of hydrolysis increased not only with the pressure level applied but also with the processing time. These results suggested that, even if the exposure of hidden epitopes upon protein unfolding increased the antigenicity of whey proteins, further peptide bonds cleavage also took place after hydrolysis. This effect could modify whey proteins antigenic sequences, and thus their antigenic power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.