Abstract
Histone variants can incorporate into the nucleosome outside of S-phase. Some are known to play important roles in mammalian germ cell development, this cell lineage being characterized by long phases of quiescence, a protracted meiotic phase, and genome-wide epigenetic reformatting events. The best known example of such an event is the global-scale erasure of DNA methylation in sexually indifferent primordial germ cells, then its re-establishment in fetal prospermatogonia and growing oocytes. Histone H3 and its post-translationally modified forms provide important waypoints in the establishment of epigenetic states. Using mass spectrometry and immunoblotting, we show that the H3.3 replacement variant is present at an unusually high amount in mouse prospermatogonia at the peak stage of global DNA methylation re-establishment. We speculate that H3.3 facilitates this process through achieving a greater level of accessibility of chromatin modifiers to DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.