Abstract

Hepcidin is considered to be a circulatory hormone and a major mechanism regulating iron homeostasis. Our previous publication revealed that acute iron intoxication induced iron deposit and dopaminergic neuron degeneration in the substantia nigra (SN) of a rat model. However, whether and how hepcidin functions in this nigral iron accumulation has not been elucidated. In the present study, we observed a decreased of FPN1 protein level in the SN triggered by peripheral iron overload within 4h, which correlated with a high hepcidin level. To further investigate the role of intracellular hepcidin under iron overload circumstances, we assessed the expression of hepcidin mRNA and FPN1 protein in vitro. We observed that hepcidin mRNA level was up-regulated and FPN1 protein level was down-regulated in MES23.5 dopaminergic cells in a period of 4h incubation with iron. Both in pCMV-XL4-hepcidin transfected and hepcidin-treated cells, decreased FPN1 protein levels were observed. Our data provide direct evidence that the role for intracellular hepcidin generated in the SN is particularly relevant to restrict iron release by down-regulation FPN1 expression in this region, thus an important contributor to the abnormal iron deposit occurred at an early stage in conditions of peripheral iron intoxication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.