Abstract

An advanced heat sinking technology is described in which heat is dissipated by flowing the liquid coolant through a matrix of well-bonded metallic particles. This porous metal heat sink has the capability to dissipate heat flux of 500W/cm2 or more with a unit area thermal resistance of 0.1°C·cm2/W. The construction of one incarnation of this class of heat sink developed for cooling of a high-power stack of laser diode arrays is described. Tradeoffs between pressure drop and thermal resistance are identified with regard to particle size and other geometric parameters. The patented manifolding geometry allows the cooling area to be scaled up without significantly increasing the overall pressure drop. Experimental data showing thermal resistance and pressure drop at a variety of different water flow rates is also presented. Applications for this technology can include cooling of laser diode arrays and high power electronic components such as CPUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call