Abstract
The Cooper minimum (CM) has been studied using high harmonic generation solely in atoms. Here, we present detailed experimental and theoretical studies on the CM in molecules probed by high harmonic generation using a range of near-infrared light pulses from λ=1.3 to 1.8 μm. We demonstrate the CM to occur in CS(2) and CCl(4) at ~42 and ~40 eV, respectively, by comparing the high harmonic spectra with the known partial photoionization cross sections of different molecular orbitals, confirmed by theoretical calculations of harmonic spectra. We use CM to probe electron localization in Cl-containing molecules (CCl(4), CH(2)Cl(2), and trans-C(2)H(2)Cl(2)) and show that the position of the minimum is influenced by the molecular environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.