Abstract
We report the extension of hollow-core fibre pulse compression to longer wavelengths. High-energy multi-cycle infrared pulses are generated via optical parametric amplification and subsequently broadened in the fibre. 2.5-cycle pulses at the Signal wavelength (1.4 µm) and 1.6-cycle pulses at the Idler wavelength (1.8 µm) in the sub-millijoule regime have been generated. New compression schemes can be applied at 1.8 µm and beyond. In this manner, 1.6-cycle carrier envelope phase stable pulses were generated by linear propagation in the anomalous dispersion regime of bulk glass which surprisingly enables compression below its third-order dispersion limit. Furthermore, a dispersion-free way of controlling the carrier envelope phase is demonstrated. Moreover, we experimentally confirm the increase in high-harmonic cut-off energy with driving laser wavelength and demonstrate the beneficial effect of few-cycle pulses which enable higher saturation intensities on target compared to multi-cycle pulses. It will be an ideal tool for future synthesis of isolated attosecond pulses in the sub-keV regime. With this laser source, we revealed for the first time multi-electron effects in high harmonic generation in xenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.