Abstract

We investigate the high harmonic generation in bulk silicon irradiated by intense near-infrared laser pulses with pulse duration le 100 fs. For peak field strength of the applied laser is below 1 V/Å, the spectral intensity of the emitted harmonics follows the prediction of perturbative nonlinear optics—the frequency comb consists of a series of discrete peaks at odd harmonic orders. For a pulse duration longer than 30 fs and peak laser field strength exceeding 1 V/Å, non-perturbative effects and generation of even order harmonics occur. The appearance of even harmonics is due to optical rectification of the transmitted pulse, which includes weak quasi-DC component with electric field as low as 3 V/upmu m. In the strong coupling regime, when the peak field strength inside vacuum exceeds 1.5 V/Å, the laser creates dense breakdown plasma of electron–hole pairs, which in turn results in severe spectral broadening of the transmitted pulse. The harmonic spectrum superimposes onto a continuous background, the spectral width of individual harmonics is substantially broadened, and their central wavelength undergoes a blue shift that covers the spacing between adjacent harmonic orders.Graphic abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call