Abstract

Observations of high-harmonic generation from a single layer of a transition metal dichalcogenide opens the door to studying strong-field and attosecond phenomena in two-dimensional materials. High-harmonic generation (HHG) in bulk solids permits the exploration of materials in a new regime of strong fields and attosecond timescales1,2,3,4,5,6. The generation process has been discussed in the context of strongly driven electron dynamics in single-particle bands7,8,9,10,11,12,13,14. Two-dimensional materials exhibit distinctive electronic properties compared to the bulk that could significantly modify the HHG process15,16, including different symmetries17,18,19, access to individual valleys20,21 and enhanced many-body interactions22,23,24,25. Here we demonstrate non-perturbative HHG from a monolayer MoS2 crystal, with even and odd harmonics extending to the 13th order. The even orders are predominantly polarized perpendicular to the pump and are compatible with the anomalous transverse intraband current arising from the material’s Berry curvature, while the weak parallel component suggests the importance of interband transitions. The odd harmonics exhibit a significant enhancement in efficiency per layer compared to the bulk, which is attributed to correlation effects. The combination of strong many-body Coulomb interactions and widely tunable electronic properties in two-dimensional materials offers a new platform for attosecond physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.