Abstract

We report on the enhancement of high harmonic generation (HHG) yield in a metasurface consisting of amorphous silicon disks in a periodic array on an insulator substrate. The structure was designed and optimized using the finite-difference time-domain method for the maximum enhancement, which reaches the factor of 20-times compared to the unstructred surface. The local field is enhanced by a broadband magnetic resonance mode allowing to use ultrashort laser pulses with Fourier transform limit down to 40 fs. Due to the anisotropic structure of the metasurface, both the local-field enhancement and the HHG yield show strong polarization anisotropy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.