Abstract

High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the spherical torus plasma. Considerable enhancement of the core heating efficiency (η) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap ϕ=−90°, kϕ=−8m−1) by increasing the magnetic field from 4.5to5.5kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (nonset∝B×k∥2∕ω) away from the antenna face and wall, and hence reducing the propagating surface wave fields. Radio frequency (RF) waves propagating close to the wall at lower B and k∥ can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call