Abstract
The accumulation of high H2S concentrations in oil and gas fields is usually associated with deeply buried high-temperature carbonate reservoirs and is attributed to the abiological oxidation of hydrocarbons by sulfate – thermochemical sulfate reduction (TSR). This review aims at providing an overview of the literature and assessing existing uncertainties in the current understanding of TSR processes and their geological significance. Reaction pathways, various reaction products, the autocatalytic nature of TSR, and reaction kinetics are discussed. Furthermore, various criteria for recognizing TSR effects, such as petrographic/diagenetic alterations and stable isotope geochemistry of the inorganic as well as the organic reactants, are summarized and evaluated. There is overwhelming geological evidence of TSR taking place at a minimum temperature of 110–140 °C, but the temperature discrepancy between experimental data and nature still exists. However, the exact nature and mechanisms of catalysts which influence TSR are not known. Local H2S variations may reflect steady-state conditions dominated by H2S buildups and flux out of the system. The latter is controlled by lithological and geological factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.