Abstract

Parameter measurement of gas–liquid two-phase flows with a high gas volume fraction (GVF) has received great attention in the research field of multiphase flow. The cone meter, as a new proposed differential pressure (DP) meter, is increasingly being applied in flowrate measurement of gas–liquid two-phase flow. A dual-parameter measurement method of gas–liquid two-phase flow based on a dual-cone meter is proposed. The two-phase flow is investigated in a horizontal pipeline with high GVF and low pressure, and exists in the form of annular flow. By adding a second cone meter, both gas mass fraction (GMF) and mass flowrate are measured. The pressure drop performances of five different sized cones have been discussed to make a cooperating cone selection and efficiently position the dual-cone in the pipe. Dual-cone flowmeter experiments of 0.45 and 0.65 equivalent diameter ratio combination, and 0.65 and 0.85 equivalent diameter ratio combination are respectively carried out to analyze the linearity of two-phase flow multiplier with Lockhart–Martinelli parameter and obtain the dual-parameter measurement results. The relative experiment error of GMF, gas mass flowrate and total mass flowrate are respectively within ±7%, ±5% and ±10%. The relative error of the liquid phase is within ±10% when the liquid mass fraction is beyond 40%. The experimental results show that it is efficient to utilize this dual-cone method for high GVF and low pressure gas–liquid two-phase flow measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call