Abstract
AbstractRealization of high quality GaAs photovoltaic materials and devices by Metal-organic Molecular Beam Epitaxy (MOMBE) with growth rates in excess of 3 microns/ hours is demonstrated. Despite high growth rates, the optimization of III/V flux-ratio and growth temperatures leads to a two dimensional layer by layer growth mode characterized by a (2×4) RHEED diagrams and strong intensity oscillations. The not intentionally doped layers exhibit low background impurity concentrations and good luminescence properties. Both n(Si) and p(Be) doping studies in the range of concentrations necessary for photovoltaic device generation are reported. Preliminary GaAs (p/n) tunnel diodes and solar cells fabricated at growth rates in excess of 31µm/h exhibit performances comparable to state of the art and stress the potential of the high growth rate MOMBE as a reduced toxicity alternative for the production of Space 111-V solar cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.