Abstract

Epidemiologic studies suggest that hepatocellular carcinoma (HCC) has a strong relationship with diabetes. However, the underlying molecular mechanisms still remain unclear. Here, we demonstrated that high glucose (HG), one of the main characteristics of diabetes, was capable of accelerating tumorigenesis in HCC cells. Advanced glycosylation end product-specific receptor (AGER) was identified as a stimulator during this process. Mechanistically, AGER activated a hexosamine biosynthetic pathway, leading to enhanced O-GlcNAcylation of target proteins. Notably, AGER was capable of increasing activity and stability of proto-oncoprotein c-Jun via O-GlcNAcylation of this protein at Ser73. Interestingly, c-Jun can conversely enhance AGER transcription. Thereby, a positive autoregulatory feedback loop that stimulates diabetic HCC was established. Finally, we found that AG490, an inhibitor of Janus kinase, has the ability to impair AGER expression and its functions in HCC cells. In conclusion, AGER and its functions to stimulate O-GlcNAcylation are important during liver tumorigenesis, when high blood glucose levels are inadequately controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.