Abstract

MiRNA let7d-5p has been recently reported to be abnormally expressed in diabetes-associated atherosclerosis (AS). However, it still remains unknown how let7d-5p contributes to the process of atherosclerosis. Twenty fresh tissues and a total of 28 wax block specimens from carotid endarterectomy procedures were obtained from the Luoyang Central Hospital affiliated to Zhengzhou University. The expression of let7d-5p was assessed using quantitative RT-PCR (qRT-PCR). A series of in vitro experiments was used to determine the roles of let7d-5p knockdown and overexpression in vascular smooth muscle cells (VSMCs). We discovered that the carotid plaques from diabetic patients had lower expression levels of miR let7d-5p. In VSMCs, the expression of miRNA let7d-5p was significantly lower in high glucose conditions compared with low glucose situations. The proliferation and migration of VSMCs were also inhibited by the overexpression of let7d-5p, whereas the opposite was true when let7d-5p was inhibited, according to gain and loss of function studies. Mechanically, let7d-5p might activate the GSK3β/β-catenin signaling pathway via binding to the high mobility group AT-Hook 2 (HMGA2) mRNA in VSMCs. Additionally, GLP-1RA liraglutide may prevent the migration and proliferation of VSMCs by raising let7d-5p levels. High glucose stimulated the proliferation and migration of VSMCs by regulating the let7d-5p/HMGA2/GSK3β/β-catenin pathway, and liraglutide may slow atherosclerosis by increasing the levels of miR let7d-5p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call