Abstract

Protein kinase C (PKC)-induced changes in glomerular mesangial cell (MC) phenotypic behavior has been implicated in diabetes. The activity of diacylglycerol-sensitive PKC isoforms in MCs is altered by ambient changes in glucose, but the regulation of PKC activity and subsequent intracellular signaling events are not yet clearly defined. Small GTP-binding proteins of the ADP-ribosylation factor (Arfs) family, may regulate protein kinase membrane recruitment and hence its activity in signaling events of non-polarized cells. Members of the ARF family may coordinate membrane dynamics and other cellular functions through their interaction with PKC. We studied the activation of Arf, PKC betaI and phospholipase D (PLD) in MCs cultured under normal or high glucose conditions. MCs cultured in high glucose medium exhibited predominantly cytosolic localization of PKC betaI, Arf3 and Arf6. However, phorbol ester (PMA) stimulation of cells cultured in high glucose significantly enhanced membrane association of PKC betaI and Arf6, but not Arf3. Using [3H]choline chloride to prelabel MCs and measuring [3H]choline-containing metabolite release as PLD activity, PMA stimulated a significant increase of PLD activity under high glucose condition. Our data suggest that Arf6 plays a specific role in activation of PKC betaI and PLD under high glucose condition, and may be a significant intracellular event in the change of the mesangial cell phenotype associated with diabetic nephropathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call