Abstract

Conversion of normally quiescent mesangial cells into extracellular matrix-overproducing myofibroblasts in response to high ambient glucose and transforming growth factor (TGF)-beta(1) is central to the pathogenesis of diabetic nephropathy. Previously, we reported that mesangial cells respond to high glucose by generating reactive oxygen species (ROS) from NADPH oxidase dependent on protein kinase C (PKC) -zeta activation. We investigated the role of TGF-beta(1) in this action of high glucose on primary rat mesangial cells within 1-48 h. Both high glucose and exogenous TGF-beta(1) stimulated PKC-zeta kinase activity, as measured by an immune complex kinase assay and immunofluorescence confocal cellular imaging. In high glucose, Akt Ser473 phosphorylation appeared within 1 h and Smad2/3 nuclear translocation was prevented with neutralizing TGF-beta(1) antibodies. Neutralizing TGF-beta(1) antibodies, or a TGF-beta receptor kinase inhibitor (LY364947), or a phosphatidylinositol 3,4,5-trisphosphate (PI3) kinase inhibitor (wortmannin), prevented PKC-zeta activation by high glucose. TGF-beta(1) also stimulated cellular membrane translocation of PKC-alpha, -beta(1), -delta, and -epsilon, similar to high glucose. High glucose and TGF-beta(1) enhanced ROS generation by mesangial cell NADPH oxidase, as detected by 2,7-dichlorofluorescein immunofluorescence. This response was abrogated by neutralizing TGF-beta(1) antibodies, LY364947, or a specific PKC-zeta pseudosubstrate peptide inhibitor. Expression of constitutively active PKC-zeta in normal glucose caused upregulation of p22(phox), a likely mechanism of NADPH oxidase activation. We conclude that very early responses of mesangial cells to high glucose include autocrine TGF-beta(1) stimulation of PKC isozymes including PI3 kinase activation of PKC-zeta and consequent generation of ROS by NADPH oxidase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.