Abstract

The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. L. tropica's digenic life cycle includes distinct stages in the vector sandfly and the mammalian host. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss. The genome-wide SNP diversity from 22 L. tropica isolates showed chromosome-specific runs of patchy heterozygosity and extensive chromosome copy number variation. All these isolates were collected during 2007-2017 in Sweden from patients infected in the Middle East and included isolates from a patient possessing two genetically distinct leishmaniasis infections three years apart with no evidence of re-infection. We found differing ancestries on the same chromosome (chr36) across multiple samples: matching the reference genome with few derived alleles, followed by blocks of heterozygous SNPs, and then by clusters of homozygous SNPs with specific recombination breakpoints at an inferred origin of replication. Other chromosomes had similar marked changes in heterozygosity at strand-switch regions separating polycistronic transcriptional units. These large-scale intra- and inter-chromosomal changes in diversity driven by recombination and aneuploidy suggest multiple mechanisms of cell reproduction and diversification in L. tropica, including mitotic, meiotic and parasexual processes. It underpins the need for more genomic surveillance of Leishmania, to detect emerging hybrids that could spread more widely and to better understand the association between genetic variation and treatment outcome. Furthering our understanding of Leishmania genome evolution and ancestry will aid better diagnostics and treatment for cutaneous leishmaniasis caused by L.tropica in the Middle East.

Highlights

  • Leishmaniasis is a vector-borne parasitic disease transmitted by sand flies

  • We validated our careful sequencing, processing and SNP ascertainment approach by long PacBio read sequencing of isolate 13_00550. This resulted in zero genome-wide homozygous SNPs after self-mapping its own short reads to its de novo assembly, and high heterozygosity compared to when the reads were mapped to the L. tropica LRC-L590 reference genome

  • The high diversity, frequent changes in heterozygosity and abundant aneuploidy in these 22 L. tropica isolates were consistent with genetic exchange, possibly by sexual or parasexual mechanisms

Read more

Summary

Introduction

Leishmaniasis is a vector-borne parasitic disease transmitted by sand flies. At least twenty Leishmania species are pathogenic to humans and can cause a spectrum of clinical manifestations, from chronic local ulcers to cutaneous leishmaniasis (CL), and to infection of internal organs in visceral leishmaniasis [1,2,3]. The kinetoplastid protozoan Leishmania tropica mainly causes cutaneous leishmaniasis in humans in the Middle East, and relapse or treatment failure after treatment are common in this area. Sexual reproduction and genetic exchange appear to occur more frequently than in other Leishmania species. Understanding these processes is complicated by chromosome instability during cell division that yields aneuploidy, recombination and heterozygosity. This combination of rare recombination and aneuploid permits may reveal signs of hypothetical parasexual mating, where diploid cells fuse to form a transient tetraploid that undergoes chromosomal recombination and gradual chromosomal loss

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.